A NEW TEST OF COMPOUND SYMMETRY

Ъу

S. N. ROY

INSTITUTE OF STATISTICS, UNIVERSITY OF NORTH CAROLINA

Institute of Statistics Mimeograph Series No. 97

March 11, 1954

Work sponsored by the Office of Naval Research under Contract No. N7-onr-28402.

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

A NEW TEST OF COMPOUND SYMMETRY

ъy

S. N. ROY

Institute of Statistics, University of North Carolina

- 1. Summary. If x_1 and x_2 have a bivariate normal distribution with a correlation coefficient ρ and the same standard deviations σ for both, then it is well known and easy to check that $x_1 + x_2$ and $x_1 x_2$ are uncorrelated, which forms the basis of Pitman's well-known test of H_0 : $\sigma_1 = \sigma_2$, for a bivariate normal population, in terms of the correlation coefficient r between $x_1 + x_2$ and $x_1 x_2$ in a random sample of size, say, n, from this population. Starting from this test which has a number of reasonably good properties, and then using the union-intersection principle $\int I_1$, $2\int I_2$, a test is obtained for compound symmetry, i.e., for H_0 : $\sigma_{11} = \sigma_{22} = \dots = \sigma_{pp}$ and all σ_{ij} 's are equal ($i \neq j = 1, 2, \ldots, p$), where σ_{ij} is any element of the covariance matrix Σ of a p-variate normal population.
- 2. <u>Test Construction</u>. Let $\rho(x_1, x_2)$ denote the population correlation coefficient between x_1 and x_2 and $r(x_1, x_2)$ the same in a random sample of size, say n, from that population. Then, for a set of stochastic variables $\underline{x}'(1 \times p)(=x_1, \ldots, x_p)$ having a p-variate normal distribution, notice that for any arbitrary non-null vector $\underline{a}'(1 \times p)$, $\underline{a}'(1 \times p) \times \underline{x}(p \times 1)$
- and $\sum_{i=1}^{p} x_i$ have a bivariate normal distribution and, now letting $\sum_{i=1}^{p} a_i = 0$,

consider the hypothesis: $\rho(\sum_{i=1}^{p} x_i, \underline{a}, \underline{x}) = 0 = H_{0\underline{a}}$ (say). Next notice that

(2.1) H_0 : all σ_{ij} 's are equal and all σ_{ij} 's are equal ($i \neq j = 1, ..., p$)

$$= \bigwedge_{\underline{a}} H_{0\underline{a}} = \bigwedge_{\underline{a}} \int \rho \left(\sum_{i=1}^{p} x_{i}, \underline{a} \cdot \underline{x} \right) = 0.7,$$

where $\underline{\mathbf{a}}'(1 \times \mathbf{p})$ is any arbitrary row vector subject to $\sum_{i=1}^{p} \mathbf{a}_{i} = 0$.

Now going back to $H_{0\underline{a}}$, we have for this hypothesis the Pitman c. tical region, say $W_{\underline{a}}(a)$, of size α , given by

(2.2)
$$W_{\underline{a}}(a): r^2(\sum_{i=1}^p x_i, \underline{a}^i \underline{x}) \ge r_C^2 (n-2),$$

where $r_{ci}(n-2)$ is the upper $\alpha/2$ -point of the central r-distribution in random samples of size n.

Hence, by the union-intersection heuristic principle $\int 1$, $2\sqrt{1}$ we have, for $H_0(=\bigcap_{\underline{a}}H_{0\underline{a}})$, the critical region $W(\beta)$ of size β given by

remembering that $\sum_{i=1}^{p} a_i = 0$, i.e., $a_p = -\sum_{i=1}^{p-1} a_i$.

It is easy to check that

(2.4)
$$\sup_{\underline{a}} r^{2}(\sum_{i=1}^{p} x_{i}, \sum_{i=1}^{p-1} a_{i}(x_{i} - x_{p}))$$

= square of the sample multiple correlation between $\sum_{i=1}^{p} x_i$ and the (p-1)set of variables $(x_1 - x_p)$, $(x_2 - x_p)$, ..., $(x_{p-1} - x_p)$ =

$$R^2 = \sum_{i=1}^{p} x_i$$
 and $(x_1 - x_p)$, $(x_2 - x_p)$, ..., $(x_{p-1} - x_p) = 7$: R^2 (say).

Notice that, since the new p-set also has the p-variate normal distribution, this R has the well-known multiple correlation distribution with degrees of freedom p-1 and n-p and a non-centrality parameter which is the popula-

tion multiple correlation between $\sum_{i=1}^{p} x_i$ and the (p-1)-set: above and which let us call ρ^2 . It is easy to check that $\rho = 0$, i.e., that R has the central multiple correlation distribution, if and only iff

$$\rho(\sum_{i=1}^{p} x_{i}^{i}, x_{i}^{i} - x_{p}^{i}) = 0 (i = 1, 2, ..., p - 1), i.e., if and only if$$

$$\rho\left(\sum_{i=1}^{p} x_{i}, \underline{a}'\underline{x}\right) = 0 \text{ (for all non-null } \underline{a} \text{ subject to } \sum_{i=1}^{p} a_{i} = 0\right).$$

We have thus, for testing compound symmetry, the critical region $W(\beta) \mbox{ of size } \beta \mbox{ given by}$

(2.5)
$$R = \sum_{i=1}^{p} x_i \text{ and } (x_1 - x_p), \dots, (x_{p-1} - x_p) = \sum_{i=1}^{p} x_i \text{ and } (x_1 - x_p), \dots$$

when R_{β} is the upper $\beta\text{-point}$ of the well-known central multiple correlation distribution.

It can be checked after some little algebra that in terms, respectively, of the elements of the sample and population covariance matrices S and Σ , R and ρ will be given by

(2.6)
$$R^{2} = 1 - p \sum_{i=1}^{p} z_{i}z^{i} / (\sum_{i=1}^{p} z_{i}) (\sum_{i=1}^{p} z^{i}),$$

$$\rho^{2} = 1 - p \sum_{i=1}^{p} \zeta_{i}\zeta^{i} / (\sum_{i=1}^{p} \zeta_{i}) (\sum_{i=1}^{p} \zeta^{i}),$$

when

$$z_{i} = \sum_{j=1}^{p} s_{ij}, \quad z^{i} = \sum_{j=1}^{p} s^{ij},$$

$$\zeta_{i} = \sum_{j=1}^{p} \sigma_{ij} \text{ and } \zeta^{i} = \sum_{j=1}^{p} \sigma^{ij}.$$

Note that $s_{ij} = s_{ji}$, $s^{ij} = s^{ji}$, $\sigma_{ij} = \sigma_{ji}$ and $\sigma^{ij} = \sigma^{ji}$.

The power properties of this test will be discussed in a later note.

References

- 1. S. N. Roy, "On a heuristic method of test construction and its use in multivariate analysis," ...nnals of Mathematical Statistics, Vol. 24 (1953), pp. 220-38.
- 2. S. N. Roy and R. C. Bose, "Simultaneous confidence interval estimation," Annals of Mathematical Statistics, Vol. 24 (1953), pp. 513-36.